

TEK-FLUX 1400A

Electromagnetic Flow Meter

FLOW

Introduction

Electromagnetic flow meters are also called as Magmeters. It is a contact instrument used for measuring the volumetric flow rates of any fluids that can adequately conduct electricity in closed pipelines. These instruments are highly accurate, reliable, and stable devices that are used in various high-pressure industrial processes.

Measuring Principle

The Tek-Flux 1400A flow meter operates on the principle of Faraday's Law of Induction. According to this principle, any change in the magnetic flux linked to an electric circuit causes an electromotive force (or voltage) to be induced in this circuit. The induced voltage is therefore directly proportional to the rate of change of magnetic flux with time.

Operation

The flow meter typically consists of two electromagnetic coils that are mounted on opposite sides of a non-magnetic measuring tube. Two electrodes are fitted inside the tube to detect the voltage generated by the conducting fluid. Although these electrodes come into contact with the fluid, they do not obstruct its flow.

When current is applied to the coils, they generate an alternating magnetic field across the cross-sectional area of the tube. A fluid flowing through the magnetic field acts as a conductor, and a voltage is induced. The induced voltage is picked up by the electrodes and sent to a transmitter that is either mounted on the flow meter or connected remotely. The transmitter calculates the volumetric flow rate and displays the output.

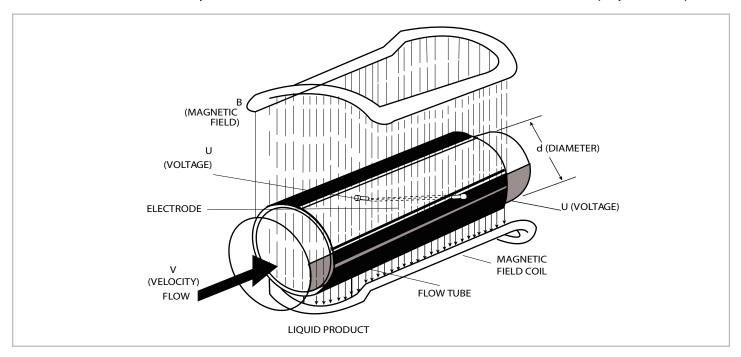


Fig.1 Operation of an Electromagnetic Flow meter

The induced voltage is calculated using the following equation:

$U = B \times d \times v$

Where,

U = Voltage Induced by the Conducting Fluid

B = Magnetic Flux Density

d = Distance Between the Electrodes

v = Average Velocity of the Conductor (i.e. fluid flowing in the tube through the magnetic field)

Since the magnetic flux density and the distance between the electrodes remain constant, the induced voltage is directly proportional to the conductor velocity.

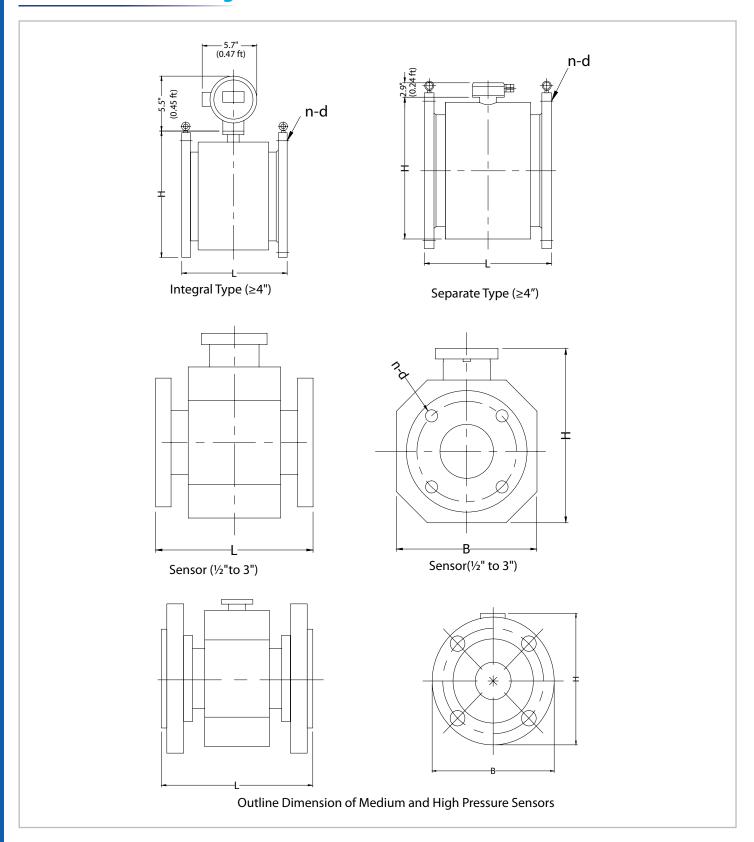
The value of the velocity is used to calculate the volumetric flow rate as follows:

$Q = A \times V$

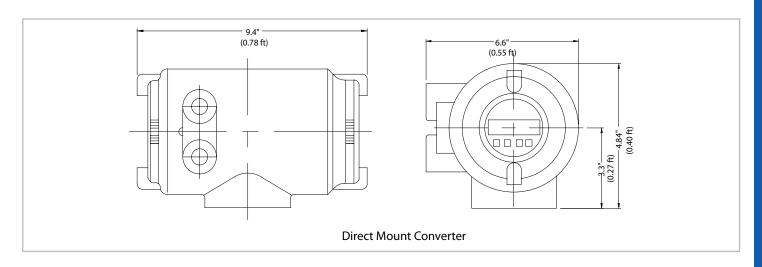
Where, Q = Flow Rate A= Area

v= Average velocity

Features/Benefits


- Wide range of nominal diameter Size ½" to 28" (0.04 ft to 2.33 ft) with IP68 protection
- Easy maintenance due to no moving parts
- Uninfluenced by temperature, pressure, viscosity, and density
- Used for wide application, can measure conductive fluid, without reference to fibre, solid, or suspending material contained in liquid
- High turndown ratio up to 1:100
- It features high intelligence, with back light LCD display, menu setting control, three grades password protection, two-way measuring, slight signal removal, auto flow compensation, and other function
- Features high intelligence, which ensure empty pipe detection, self-detection, self-diagnostic functions, and safety alarms for upper and lower limit
- Features SMART excitation, which ensures zero-point stability, high reliability, and low power consumption
- · Lining and electrode available in various materials which can measure nearly all conductive fluids
- It has multiple signal output, pulse or Modbus RS485 or HART® or 4 to 20 mA
- The power supply system has good voltage vibration ability
- Meters batching and blending totalization

Applications


- It can measure highly corrosive medium such as concentrated acid and concentrated alkaline using PTFE lining material
- By using Hastelloy C electrode we can measure seawater and brine application

Dimensional Drawing

Size Inches (ft)		Sensor Dimensio Inches (ft)	Flange Connection Dimension (ft)	Net Weight in lbs (kg)	
	L	В	Н	n-d	
1/2" (0.04)	7.87" (0.65)	5.11" (0.42)	8.66" (0.72)	0.01-Ф0.04	17.63 (8)
1" (0.08)	7.87" (0.65)	5.59" (0.46)	9.05" (0.75)	0.01-Ф0.04	26.45 (12)
2" (0.16)	7.87" (0.65)	6.69" (0.55)	10.23" (0.85)	0.02-Ф0.05	39.68 (18)
3" (0.25)	7.87" (0.65)	7.87" (0.65)	11.22" (0.93)	0.02-Ф0.05	57.32 (26)
4" (0.33)	9.84" (0.82)	9.25" (0.77)	11.41" (0.95)	0.02-Ф0.07	66.13 (30)
5" (0.41)	9.84" (0.82)	10.62" (0.88)	12.79" (1.06)	0.02-Ф0.08	79.36 (36)
6" (0.5)	11.81" (0.98)	11.81" (0.98)	13.77" (1.14)	0.02-Ф0.08	92.59 (42)
8" (0.66)	13.77" (1.14)	13.38" (1.11)	15.15" (1.26)	0.03-Ф0.07	121.25 (55)
10" (0.83)	15.74" (1.31)	15.94" (1.32)	17.51" (1.45)	0.03-Ф0.08	154.32 (70)
12" (1)	19.68" (1.64)	18.11" (1.50)	20.27" (1.68)	0.03-Ф0.08	187.39 (85)
18" (1.5)	23.62" (1.96)	25.19" (2.09)	27.16" (2.26)	0.06-Ф0.09	330.69 (150)
20" (1.66)	23.62" (1.96)	28.14" (2.34)	29.92" (2.49)	0.06-Ф0.11	440.92 (200)
24" (2)	23.62" (1.96)	33.07" (2.75)	34.64" (2.88)	0.06-Ф0.13	573.20 (260)
28" (2.33)	27.55" (2.30)	35.23" (2.93)	38.18" (3.18)	0.07-Ф0.09	793.66 (360)

Specifications

Technical Specification

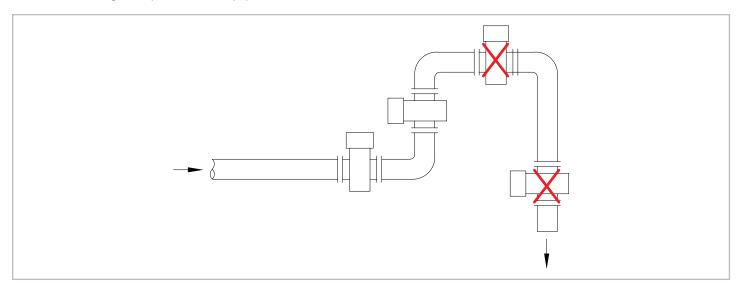
Accuracy			±0.5%, ±0.3% Optional		
Repeatability			0.15%		
Ambient Temperature	Sensor (Re	mote Type)	-4 °F to 158 °F (-20 °C to +70 °C)		
	Converter		-4 °F to 158 °F (-20 °C to +70 °C)		
	Integral Ty	pe	14 °F to 122 °F (-10 °C to +50 °C)		
Humidity			5% to 95% RH (no frost)		
Vibration Frequency			55 Hz		
Amplitude			0.55 mm		
Ambient Magnetic Field	d		≤400 A/m		
Fluid Temperature	Direct Mou	ınt	≤176 °F (80 °C)		
	Separate	Rubber Lining	≤176 °F (80 °C)		
	Туре	PTFE Lining	≤248 °F (120 °C)		
Nominal Pressure			Limited to Flange Rating		
Power Supply			18 to 28 VDC, 85 to 220 VAC		
Enclosure			Sensor: IP68, Converter: IP65		
Output Signal			Pulse and 4 to 20 mA		
Digital Communication			Modbus, RS485 or HART		
Electrode Material			316SS or Hastelloy C and Specials		
Lining Material			PTFE or Hard Rubber		
Flange Material			Carbon Steel, Stainless Steel and Specials		
Measuring Tube Material			Stainless Steel, Hastelloy C and Specials		

Electrode Material Selection

Electrode Material	Application				
Stainless Steel	Used for measuring water, waste water, inorganic acid, organic acid, or other corrosive medium				
Hastelloy C	Used for measuring oxidizing acids such as nitric acid, mixed acid, and vitriol mixed liquid, also oxydized salts such as Fe ⁺⁺ , Cu ⁺⁺ , and other oxidizing agents such as pypocholoride solution whose temperature is higher than normal, and seawater				

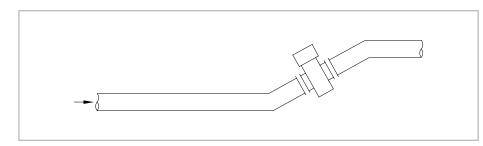
Lining Material

Lining material	Main performance	Application scope
PTFE	 Stable chemical performance, resists acid, alkali, saline solution and organic solvent. Common wear-resisting property 	-112 °F to 248 °F (-80 °C to 120 °C) Highly corrosive medium such as concentrated acid and concentrated alkaline
Synthetic Rubber	 Excellent elasticity, good breaking tenacity, good wear-resisting property Resists acid solution, aqueous alkali, saline solution at normal low concentrations of acid solution 	<176 °F (80 °C) Neutral abrasive pulp, slurry and coal slurry

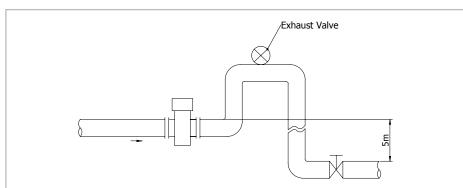


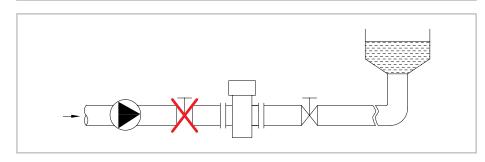
Flow Range and Nominal Diameter Selection

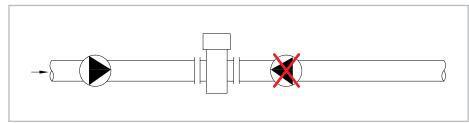
	Veloci	ty		
Inch (ft)	0.98 to 32.80 ft/sec	0.3 to 10 m/s m3/hr		
	gal/min			
1/2" (0.04)	0.8 to 28.2	0.19 to 6.4		
1" (0.08)	2.4 to 77.9	0.53 to 17.7		
2" (0.16)	9.4 to 312.6	2.13 to 71.0		
3" (0.25)	23.9 to 796.9	5.43 to 181		
4" (0.33)	37.4 to 1246	8.49 to 283		
5" (0.41)	58.6 to 1946.1	13.3 to 442		
6" (0.5)	84.1 to 2800.2	19.1 to 636		
8" (0.66)	149.3 to 4975.2	33.9 to 1130		
10" (0.83)	233.8 to 7793.1	53.1 to 1770		
12" (1)	335.5 to 11183.3	76.2 to 2540		
18" (1.5)	757.3 to 25184.4	172 to 5720		
20" (1.66)	933.4 to 31128.3 212 to 7070			
24" (2)	1347.3 to 44909.2	306 to 10200		
28" (2.33)	1831.6 to 60979.7	416 to 13850		


Installation

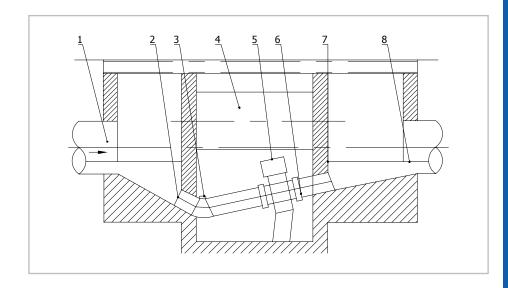
Install flow meter at relative low of horizontal pipe or in upward vertical direction. Do not install the flow-meter at the highest point of the pipe and in the downward vertical direction.




Install flow meter at the rising pipe


For installing at an open pipe, the flow meter should be installed at a relative low point. If the fall in the pipe is more than 16.40 ft, the vent valve should be installed at downstream of the sensor where it should have back pressure

The control valve and stop valve should be installed at the downstream of the sensor not on the upstream side.



Sensor should be installed at the outlet of the pump not the inlet.

Flow meter installation in a measuring well:

- 1. Inlet
- 2. Entrance Gate
- 3. Cleaning Hole
- 4. Overflow Pipe
- 5. Flow meter
- 6. Nozzle Stub
- 7. Outlet
- 8. Drain Valve

Model Chart

Example	Tek-Flux 1400A	25	1	ı	НС	1	1	Т	Tek-Flux 1400A-25-1-I-HC-1-1-T
Series	Tek-Flux 1400A								Electromagnetic Flow meter
Size		15 25 50 80 100 150 200 250 300 450 500 600 700							1/2" (PTFE Liner/HC Electrodes) 1" (PTFE Liner/HC Electrodes) 2" 3" 4" 6" 8" 10" 12" 18" 20" 24"
Transmitter			1 2						Direct Mount Remote Mount (comes with 30 ft of cable)
Output				I S H					4-20 mA, Pulse 4-20 mA, Pulse, Modbus RS485 4-20 mA, Pulse, HART
Electrodes					SS HC X				316L SS Hastelloy C Consult Factory for Specials
Process Connection						1 2 3 6			150# ANSI Flange AWWA Flange 300# ANSI Flange 600# ANSI Flange
Power Supply							1 2		18-28 VDC 85-220 VAC
Liner Material								T H X	PTFE Hard Rubber Consult Factory for Specials

Popular Models

Model Number	Description
1400A-50-1-I-SS-1-1-H	2", Hard Rubber, SS Electrodes, 150# Flange
1400A-80-1-I-SS-1-1-H	3", Hard Rubber, SS Electrodes, 150# Flange
1400A-100-1-I-SS-1-1-H	4", Hard Rubber, SS Electrodes, 150# Flange
1400A-150-1-I-SS-1-1-H	6", Hard Rubber, SS Electrodes, 150# Flange
1400A-15-1-I-HC-1-1-T	½", PTFE, Hastelloy C Electrodes, 150# Flange
1400A-25-1-I-HC-1-1-T	1", PTFE, Hastelloy C Electrodes, 150# Flange
1400A-50-1-I-HC-1-1-T	2", PTFE, Hastelloy C Electrodes, 150# Flange
1400A-80-1-I-HC-1-1-T	3", PTFE, Hastelloy C Electrodes, 150# Flange
1400A-100-1-I-HC-1-1-T	4", PTFE, Hastelloy C Electrodes, 150# Flange
1400A-150-1-I-HC-1-1-T	6", PTFE, Hastelloy C Electrodes, 150# Flange

Accessories

Model Number	Description			
1400A-GR-2	Two 2" Stainless Steel Grounding Rings			
1400A-GR-3	Two 3" Stainless Steel Grounding Rings			
1400A-GR-4	Two 4" Stainless Steel Grounding Rings			
1400A-GR-6	Two 6" Stainless Steel Grounding Rings			
1400A-GR-8	Two 8" Stainless Steel Grounding Rings			
1400A-GR-10	Two 10" Stainless Steel Grounding Rings			
1400A-GR-12	Two 12" Stainless Steel Grounding Rings			
1400A-GR-18	Two 18" Stainless Steel Grounding Rings			
1400A-GR-20	Two 20" Stainless Steel Grounding Rings			
1400A-GR-24	Two 24" Stainless Steel Grounding Rings			

Note: Please note that when ordering a PTFE lined meter that grounding rings are included and do not have an additional cost

Tek-Trol LLC

796 Tek Drive Crystal Lake, IL 60014, USA Sales: +1 847-655-7428

Tek-Trol Solutions BV

Florijnstraat 18, 4879 AH Etten-Leur, Netherlands Sales: +31 76-2031908

Tek-Trol Middle East FZE

SAIF Zone, Y1-067, PO BOX No. 21125, Sharjah, UAE Sales: +971-6526-8344

Support: +1 847-857-6076 Email: tektrol@tek-trol.com www.tek-trol.com

Tek-Trol is a fully owned subsidiary of TEKMATION LLC. We offer our customers a comprehensive range of products and solutions for process, power and oil & gas industries. Tek-Trol provides process measurement and control products for Flow, Level, Temperature & Pressure measurement, Control valves & Analyzer systems. We are present in 15 locations globally and are known for our knowledge, innovative solutions, reliable products and global presence.